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Complex Sensor Actuator Systems
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ACTUATORS

•flight surfaces
•steering wheel
•motor speeds
•joint torques
•...

SENSORS

•GPS
•acceleration
•radar
•vision
•...

How to connect ?
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Embedded Optimization
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Solve, in real-time and repeatedly, an optimization problem 
that depends on the incoming stream of input data, to 
generate a stream of output data.
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Embedded Optimization
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Solve, in real-time and repeatedly, an optimization problem 
that depends on the incoming stream of input data, to 
generate a stream of output data.

Example: Parametric Quadratic Programming
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Embedded Optimization: a CPU-Intensive Map
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EMBEDDED 
OPTIMIZATION

Surprisingly powerful!
Nearly every map of interest can be generated by 
embedded convex optimisation…
  



The ubiquity of convex optimization

THEOREM [Baes, D., Necoara, 2008]
Every continuous map

µ : Rn

x ! Rn

u

x 7! u = µ(x)

can be represented as parametric convex program (PCP):

µ(x) = argmin
u

g(u, x) s.t. (u, x) 2 �

PCP: objective and feasible set jointly convex in parameters and
variables (x , u).

The ubiquity of parametric convex optimization
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(Sketch of Proof)
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(Sketch of Proof)

Given: graph of µ(x)

Construct epigraph E of g(u, x)

1. lift graph of µ(x) using strictly convex g

0(x) and add upward
rays

2. take convex hull. Can show that minima are preserved.

S := {(x , µ(x), t)|x 2 ⌦, g0(x)  t}
E := conv(S)

(Sketch of Proof)

Given: graph of µ(x)

Construct epigraph E of g(u, x)

1. lift graph of µ(x) using strictly convex g

0(x) and add upward
rays

2. take convex hull. Can show that minima are preserved.

S := {(x , µ(x), t)|x 2 ⌦, g0(x)  t}
E := conv(S)

(Sketch of Proof)

Given: graph of µ(x)

Construct epigraph E of g(u, x)

1. “Bend” graph of µ(x) using strictly convex g

0(x)

2. Add upward rays.

3. Take convex hull.

4. Show that minima are preserved.

S := {(x , µ(x), t)|x 2 ⌦, g0(x)  t}
E := conv(S)
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Overview

• Embedded Optimization

• Time Optimal Motions in Mechatronics

• Real-Time Optimization Methods and Software

• Four Experimental NMPC Applications
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Time-Optimal Point-To-Point Motions [PhD Vandenbrouck 2012]
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Fast oscillating systems (cranes, plotters, wafer steppers, …)
Control aims:

• reach end point as fast as possible
• do not violate constraints
• no residual vibrations

Idea: formulate as embedded optimization problem 
   in form of Model Predictive Control (MPC)
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Model Predictive Control (MPC)
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Always look a bit into the future

Example: driver predicts and optimizes, 
and therefore slows down before a 
curve
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Optimal Control Problem in MPC
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For given system state x, which controls u lead to the best objective value 
without violation of constraints ? 

prediction horizon (length also unknown for time optimal MPC)

controls (unknowns / variables) 

simulated state trajectory
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Optimal Control Problem in MPC
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For given system state x, which controls u lead to the best objective value 
without violation of constraints ? 

prediction horizon (length also unknown for time optimal MPC)

controls (unknowns / variables) 

simulated state trajectory
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Time Optimal MPC of a Crane
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Hardware: xPC Target.    Software: qpOASES [Ferreau, D., Bock, 2008]

SENSORS

•line angle
•cart position

ACTUATOR

•cart motor

MPC
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Time Optimal MPC of a Crane
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Univ. Leuven [Vandenbrouck, Swevers, D.]
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Optimal solutions varying in time (inequalities matter)
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Solver qpOASES [PhD H.J. Ferreau, 2011], [Ferreau, Kirches, Potschka, Bock, D. , A parametric 
active-set algorithm for quadratic programming, Mathematical Programming Computation, 2014]
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Overview

• Embedded Optimization

• Time Optimal Motions in Mechatronics

• Real-Time Optimization Methods and Software

• Four Experimental NMPC Applications
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Simplified Optimal Control Problem in ODE

terminal
constraint r(x(T )) � 0

6
path constraints h(x, u) � 0

initial value
x0 r states x(t)

controls u(t)
-p

0 t
p
T

minimize
x(·),u(·)

Z T

0
L(x(t), u(t)) dt + E (x(T ))

subject to

x(0)� x0 = 0, (fixed initial value)

ẋ(t)�f (x(t), u(t)) = 0, t 2 [0,T ], (ODE model)

h(x(t), u(t)) � 0, t 2 [0,T ], (path constraints)

r (x(T )) � 0 (terminal constraints)
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Optimal Control Solution Methods - Family Tree
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Optimal Control Solution Methods - Family Tree
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(curse of 
dimensionality) 
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Optimal Control Solution Methods - Family Tree
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(curse of 
dimensionality) 

(bad inequality 
treatment) 
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Optimal Control Solution Methods - Family Tree
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(curse of 
dimensionality) 

(bad inequality 
treatment) 

(only for stable 
systems) 
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Optimal Control Solution Methods - Family Tree
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(curse of 
dimensionality) 

(bad inequality 
treatment) 

(only for stable 
systems) 
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Direct Multiple Shooting Visualization
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Direct Multiple Shooting [Bock and Plitt, 1981] [Leineweber et al. 1999]

I Discretize controls e.g. piecewise constant

u(t) = u

i

for t 2 [t
i

, t
i+1]

I Solve relaxed DAE on each interval [t
i

, t
i+1] numerically,

starting with artificial initial values x
i

, z
i

. Obtain trajectory
pieces, and state at end of interval �

i

(x
i

, z
i

, q
i

, p).

I Also numerically compute integrals

l

i

(x
i

, z
i

, u
i

, p) :=

Z
t

i+1

t

i

L(x , z , u, p) dt

Direct Multiple Shooting [Bock and Plitt, 1981] [Leineweber et al. 1999]

I Discretize controls e.g. piecewise constant

u(t) = u

i

for t 2 [t
i

, t
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starting with artificial initial values x
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. Obtain trajectory
pieces, and state at end of interval �
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I Also numerically compute integrals
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t
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L(x , z , u, p) dt

Hans Georg Bock
NLP in Direct Multiple Shooting
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bq
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q
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q

minimize
x ,z,u,p

N�1X

i=0

l

i

(x
i

, z
i

, u
i

, p) + E (x
N

, p)

subject to

x

i+1 � �
i

(x
i

, z
i

, u
i

, p) = 0, i = 0, . . . ,N � 1, (continuity)

g(x
i

, z
i

, u
i

, p) = 0, i = 0, . . . ,N � 1, (algebraic consistency)

h(x
i

, z
i

, u
i

, p) � 0, i = 0, . . . ,N, (discretized path constr.)

r (x0, x
N

, p) � 0. (boundary conditions)
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Real-Time Iterations  [PhD Diehl 2001, Heidelberg]
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1) Keep states in problem - use direct multiple shooting [1] 

2) Exploit convexity via Generalized Gauss-Newton [2]
3) Use tangential predictors for short feedback delay [3]

4) Iterate while problem changes (Real-Time Iterations) [4]
5) Auto-generate custom solvers in plain-C [5,6] (no if, no  malloc)

[1] Bock & Plitt, IFAC WC, 1984
[2] Bock 1983
[3] Bock, D. et al, 1999
[4] D. et al., 2002 / 2005
[5] Mattingley & Boyd, 2009 
[6] Houska et al.:  Automatica, 2011.            Open source toolkit:  ACADO CodeGen [6] 



Dynamic Optimization Problem in MPC

Structured parametric Nonlinear Program (pNLP)
Initial Value        is often not known beforehand (“online data” in MPC)
Discrete time dynamics come from ODE simulation (“multiple shooting”)



Summarize as                                            

with convex     and

Dynamic Optimization Problem in MPC



Nonlinear MPC = parametric Nonlinear Programming

Solution manifold is piecewise differentiable (kinks at active set changes)

Critical regions are non-polyhedral
NLP sensitivity 

How to deal with a 
sequence of large 
parameter changes?
NLP Pathfollowing!



Real-Time Iteration (Sequential Convex Programming)

      Step 1: Linearize nonlinear constraints at      to obtain convex problem:

      
Step 2: Get new value of parameter       and solve convex problem - 
typically a quadratic program (QP) - to obtain next iterate. Go to step 1.

 
[Diehl, Bock, Schloeder, Findeisen, Nagy, Allgower, JPC, 2002]
[Zavala, Anitescu, SICON, 2010] 
[Tran Dinh, Savorgnan, Diehl, SIOPT, 2013]



Real-Time Iteration

Tangential prediction even across active set changes
Can divide computations in “preparation” and “feedback phase” [D. 2001]



Real-Time Iteration Contraction Estimate

Contraction estimate for primal dual errors: 

Contraction depends on bounds on nonlinearity, Jacobian error, and on strong 
regularity. Contraction rate independent of active set changes!

[Tran Dinh, Savorgnan, Diehl, SIOPT, 2013]



Computations in one Real-Time Iteration

1) Linearize constraints: 
Integration & sensitivities

2) Condense sparse QP

3) Solve condensed QP      

NLP

Sparse QP

Condensed small QP



Computations in one Real-Time Iteration

1) Linearize constraints: 
Integration & sensitivities

2) Condense sparse QP

3) Solve condensed QP      

NLP

Sparse QP

Condensed small QP

Can prepare without knowing 
“Preparation phase”    



Computations in one Real-Time Iteration

1) Linearize constraints: 
Integration & sensitivities

2) Condense sparse QP

3) Solve condensed QP 

NLP

Sparse QP

Condensed small QP “Feedback phase”



Alternative: skip condensing, directly solve sparse QP

1) Linearize constraints: 
Integration & sensitivities 

2) Solve sparse QP, e.g.
with Riccati type algorithm

NLP

Sparse QP

Feedback phase



Past algorithmic developments [PhD students at KU Leuven]

• Online active set strategy QP solver qpOASES              
[Ferreau, Bock, D IJC 2007], [Ferreau, Kirches, Potschka, Bock, D., 
MathProgC 2014]. Well tested in dozens of academic and industrial 
applications.

• Autogeneration of plain-C nonlinear optimal control 
solvers in ACADO [Houska, Ferreau, D., Automatica 2011]

• Algorithmic Differentiation and Optimal Control 
Modelling Environment CasADi [Andersson, Akesson, D., 
LNCSE 2012]

35

Hans Joachim 
Ferreau

Boris Houska

Joel Andersson

[all our software is open-source and comes under industry friendly LGPL license]



Past algorithmic developments (2)
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• ACADO Code Generation consolidation, block sparse 
condensing, parallelization, moving horizon estimation

• Dual Newton active set strategy QP solver qpDUNES for 
long horizon optimal control [Frasch 2014], [Frasch, Sager, D. 2015]

• CasADi consolidation, sparse Hessian generation, 
differentiable implicit solvers for Lyapunov equations

Janick Frasch

Milan Vukov

Joris Gillis



Recent algorithmic developments (in Freiburg)
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• Auto-Generated Implicit Integrators with Higher Order 
Derivatives [Quirynen, Vukov, Zanon, D.,OCAM, 2014]

• Tree-Sparsity Exploiting Optimisation Algorithms for 
Nonlinear Model Predictive Control

• Convex Second Derivative Approximations for Economic 
Nonlinear Model Predictive Control 

• Efficient Register Management for Block Sparse Linear 
Algebra Solvers, Riccati QP Solver HPMPC (PhD at DTU 
Lyngby, currently postdoc in Freiburg)

• Inexact Newton type methods for microsecond Nonlinear 
MPC

Dimitris Kouzoupis

Robin Verschueren

Rien Quirynen

Andrea Zanelli

Gianluca Frison



Recent algorithmic developments (in Freiburg)
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• Auto-Generated Implicit Integrators with Higher Order 
Derivatives [Quirynen, Vukov, Zanon, D.,OCAM, 2014]

• Tree-Sparsity Exploiting Optimisation Algorithms for 
Nonlinear Model Predictive Control

• Convex Second Derivative Approximations for Economic 
Nonlinear Model Predictive Control 

• Efficient Register Management for Block Sparse Linear 
Algebra Solvers, Riccati QP Solver HPMPC (PhD at DTU 
Lyngby, currently postdoc in Freiburg)

• Inexact Newton type methods for microsecond Nonlinear 
MPC

Dimitris Kouzoupis

Robin Verschueren

Rien Quirynen

Andrea Zanelli

Gianluca Frison



Implicit Runge-Kutta / Collocation Integrators for ODE

39
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satisfies |R(z)| æ 0 for z æ ≠Œ. It is interesting to note that an A-stable RK
method with nonsingular coe�cient matrix A and which additionally is sti�y
accurate, can be shown to be L-stable [149]. Even though the latter stability
definitions will be su�cient for our purposes throughout this thesis, alternative
concepts can further be found in [13, 61, 149, 191, 245].

2.2.2 Collocation Methods

Let us now introduce an important family of IRK schemes, namely the collocation
methods which are known to have good stability properties. For ordinary
di�erential equations, it corresponds to defining a polynomial p(t) of degree
q whose derivative coincides at q given nodes with the vector field of the
di�erential equation [148]. For this purpose, q distinct collocation points
0 Æ c1 < c2 < . . . < c

q

Æ 1 need to be provided which uniquely define the
corresponding integration method. This is also illustrated in Figure 2.4 for
one specific integration step. The collocation polynomial p(t) namely needs to
satisfy the following q + 1 conditions:

p(t
n

) = x
n

0 = f(t
i

, ṗ(t
i

), p(t
i

)) for i = 1, . . . , q,
(2.17)

where the time points t
i

:= t
n

+ c
i

Tint for i = 1, . . . , q are defined and using the
implicit ODE formulation in (2.11).

Figure 2.4: Illustration of one integration step of a collocation method based
on a polynomial interpolation through a set of points c

i

, i = 1, . . . , q.

Based on the latter definition of the collocation polynomial, a numerical
approximation for the solution at time t

n+1 = t
n

+ Tint can be obtained simply
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us therefore consider the following implicitly defined IVP

0 = f(t, ẋ(t), x(t)), x(t0) = x̂0. (2.11)

In addition, this section includes a discussion on the treatment of index-1 DAE
systems by IRK schemes

0 = f(t, ẋ(t), x(t), z(t)), x(t0) = x̂0,

0 = g(t, x(t), z(t)),
(2.12)

which corresponds to the semi-explicit formulation in (1.5) where the algebraic
variables z(t) are defined by a separate set of algebraic equations g(·) = 0 for
notational convenience. These methods can however also be applied directly to
the fully implicit DAE formulation from Eq. (1.4).

2.2.1 Sti� Di�erential Equations

Even though they are not as straightforward to implement as explicit schemes,
implicit integration methods are quite popular because of their superior
performance on sti� problems which are rather common in practice. Many
references would even describe sti� di�erential equations as those for which
certain implicit methods perform considerably better than explicit ones [149].
As we will discuss next, the eigenvalues of the Jacobian of the system equations
certainly play a role but also many other quantities such as the system dimension
and smoothness of the solution are important. Let us introduce one typical
characterization of sti�ness, followed by a discussion on desirable stability
properties for numerical simulation.

Characterization of sti�ness

An important class of sti� problems consists of processes with multiple time
scales, i.e. including fast as well as relatively slow dynamics. For this purpose,
let us introduce a simple characterization of sti�ness based on the following
linearized dynamics at a certain time point

ẋ(t) = A(t)x(t) + „(t), (2.13)

where A is a nx ◊ nx matrix with nx eigenvalues ⁄
i

. A relatively small value of
|Re(⁄

i

)| then corresponds to slow dynamics, for which it would be desirably to
take rather large integration steps. On the other hand, a larger value of |Re(⁄

i

)|
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concepts can further be found in [13, 61, 149, 191, 245].

2.2.2 Collocation Methods

Let us now introduce an important family of IRK schemes, namely the collocation
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q whose derivative coincides at q given nodes with the vector field of the
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n

0 = f(t
i

, ṗ(t
i

), p(t
i

)) for i = 1, . . . , q,
(2.17)

where the time points t
i

:= t
n

+ c
i

Tint for i = 1, . . . , q are defined and using the
implicit ODE formulation in (2.11).

Figure 2.4: Illustration of one integration step of a collocation method based
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i

, i = 1, . . . , q.

Based on the latter definition of the collocation polynomial, a numerical
approximation for the solution at time t

n+1 = t
n

+ Tint can be obtained simply
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di�erential equations, it corresponds to defining a polynomial p(t) of degree
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Based on the latter definition of the collocation polynomial, a numerical
approximation for the solution at time t

n+1 = t
n

+ Tint can be obtained simply

Approximate solution of Ordinary Differential Equation (ODE)

by an interpolation polynomial p(t) that satisfies derivative 
matching conditions on q collocation points:



Integration over one multiple shooting interval

40
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76 NUMERICAL SIMULATION AND SENSITIVITY PROPAGATION

Tint
q

q

j=1 a
ij

k
j

, Z
i

). Additionally, the state derivative variables S
n

= dx

n

dx

0

are
defined for which the initial value reads as S0 = 1. These expressions can
then be shown to correspond to the same IRK method, but applied to the
VDAE system for the original formulation. The IND scheme therefore provides
derivatives which converge to the continuous-time sensitivities with the same
order as for the state trajectory [5, 44]. The equations in (2.40) are linear and
they define the stage variables dk

i

dx

0

, dZ

i

dx

0

for i = 1, . . . , q. Note that the IFT
can additionally be used on the consistency condition in (2.28d), in order to
obtain the corresponding derivatives for the algebraic variables dz

n

dx

0

which have
been omitted in (2.40). It is important to stress that these linear sensitivity
equations can be used independent of the Newton-type implementation for the
original nonlinear system of equations to compute the stage variables k

i

and
Z

i

in (2.28). As will be discussed further in Section 2.4, it can however be
interesting to design an e�cient implementation where the Newton-type scheme
and the direct IFT approach are rather intertwined.

Let us define the latter concept of a direct di�erentiation approach for implicit
schemes more generally, by first introducing the following compact notation for
the integration method in (2.4) or (2.28)

x
n+1 = F (x

n

, K
n

, u)

0 = G(x
n

, K
n

, u),
(2.41)

where K
n

œ Rn

K refers collectively to the internal variables defined by the
function G(·) such that the Jacobian ˆG

n

ˆK

(x
n

, K
n

, u) œ Rn

K

◊n

K needs to be
invertible. For example, K = (k1, . . . , k

q

, Z1, . . . , Z
q

) for a specific integration
step of a q-stage RK method on a DAE system, and u forms an appropriate
representation for the applied control inputs. The idea is then to obtain the
first order derivatives dx

n+1

dx

0

and dx

n+1

du

, based on the sensitivity results from
the previous integration step, using the IFT technique

Ë
dx

n+1

dx

0

dx

n+1

du

È
=

Ë
ˆF

n

ˆx

dx

n

dx

0

ˆF

n

ˆx

dx

n

du

+ ˆF

n

ˆu

È
+ ˆF

n

ˆK

Ë
dK

n

dx

0

dK

n

du

È

Ë
dK

n

dx

0

dK

n

du

È
= ≠ˆG

n

ˆK

≠1 Ë
ˆG

n

ˆx

dx

n

dx

0

ˆG

n

ˆx

dx

n

du

+ ˆG

n

ˆu

È
,

(2.42)

where the compact notation ˆG

n

ˆK

= ˆG

ˆK

(x
n

, K
n

, u), ˆG

n

ˆx

= ˆG

ˆx

(x
n

, K
n

, u) and
ˆG

n

ˆu

= ˆG

ˆu

(x
n

, K
n

, u) is used and the same holds for the derivatives of the
function F (·). Note that the required derivative evaluations e.g. of the form
ˆG

n

ˆx

dx

n

du

or ˆG

n

ˆu

can be obtained e�ciently using AD techniques, based on either
the forward or reverse mode [132]. Note that the function F (·) is linear in case
Eq. (2.41) represents an RK formula (2.4). Typically, the main computational
e�ort in a direct approach for the sensitivity propagation of implicit integration
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148 LIFTED NEWTON-TYPE COLLOCATION INTEGRATORS

Figure 6.1: Illustration of Ns fixed integration steps of a collocation scheme
over one shooting interval [t

i

, t
i+1], including the corresponding equations.

where the collocation variables are obtained implicitly by solving the system
of equations in (6.2) which depends on the state value x

i

and control input u
i

.
The Lagrangian of the NLP in (9.28) is given by

L(W, �) =
N≠1ÿ

i=0
L

i

(w
i

, ⁄
i

) + m(x
N

)

=
N≠1ÿ

i=0
l(w

i

) + m(x
N

) + ⁄€
≠1 (x0 ≠ x̂0) +

N≠1ÿ

i=0
⁄€

i

(„(w
i

) ≠ x
i+1) ,

(6.6)
where ⁄

i

for i = 0, . . . , N ≠ 1 denote the multipliers corresponding to the
continuity constraints in (9.28c) and ⁄≠1 denotes the multiplier of the initial
value condition (9.28b).

A popular alternative to multiple shooting is direct collocation [36], which is an
example of a direct transcription method as introduced in Section 1.2.3. We

Concatenate several integrator steps together 

and summarise as implicit discrete time system (with large vector Kn  of 
internal variables):
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Tint
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ij
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). Additionally, the state derivative variables S
n

= dx

n

dx

0

are
defined for which the initial value reads as S0 = 1. These expressions can
then be shown to correspond to the same IRK method, but applied to the
VDAE system for the original formulation. The IND scheme therefore provides
derivatives which converge to the continuous-time sensitivities with the same
order as for the state trajectory [5, 44]. The equations in (2.40) are linear and
they define the stage variables dk

i

dx

0

, dZ

i

dx

0

for i = 1, . . . , q. Note that the IFT
can additionally be used on the consistency condition in (2.28d), in order to
obtain the corresponding derivatives for the algebraic variables dz

n

dx

0

which have
been omitted in (2.40). It is important to stress that these linear sensitivity
equations can be used independent of the Newton-type implementation for the
original nonlinear system of equations to compute the stage variables k

i

and
Z

i

in (2.28). As will be discussed further in Section 2.4, it can however be
interesting to design an e�cient implementation where the Newton-type scheme
and the direct IFT approach are rather intertwined.

Let us define the latter concept of a direct di�erentiation approach for implicit
schemes more generally, by first introducing the following compact notation for
the integration method in (2.4) or (2.28)

x
n+1 = F (x

n

, K
n

, u)

0 = G(x
n

, K
n

, u),
(2.41)

where K
n

œ Rn

K refers collectively to the internal variables defined by the
function G(·) such that the Jacobian ˆG
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, K
n

, u) œ Rn

K

◊n

K needs to be
invertible. For example, K = (k1, . . . , k

q

, Z1, . . . , Z
q

) for a specific integration
step of a q-stage RK method on a DAE system, and u forms an appropriate
representation for the applied control inputs. The idea is then to obtain the
first order derivatives dx

n+1

dx

0

and dx

n+1

du

, based on the sensitivity results from
the previous integration step, using the IFT technique
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where the compact notation ˆG

n
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(x
n

, K
n

, u), ˆG

n
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n

, K
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, u) and
ˆG

n

ˆu

= ˆG

ˆu

(x
n

, K
n

, u) is used and the same holds for the derivatives of the
function F (·). Note that the required derivative evaluations e.g. of the form
ˆG

n

ˆx

dx

n

du

or ˆG

n

ˆu

can be obtained e�ciently using AD techniques, based on either
the forward or reverse mode [132]. Note that the function F (·) is linear in case
Eq. (2.41) represents an RK formula (2.4). Typically, the main computational
e�ort in a direct approach for the sensitivity propagation of implicit integration
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Figure 6.1: Illustration of Ns fixed integration steps of a collocation scheme
over one shooting interval [t

i

, t
i+1], including the corresponding equations.

where the collocation variables are obtained implicitly by solving the system
of equations in (6.2) which depends on the state value x

i

and control input u
i

.
The Lagrangian of the NLP in (9.28) is given by

L(W, �) =
N≠1ÿ

i=0
L

i

(w
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, ⁄
i

) + m(x
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)

=
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l(w

i

) + m(x
N

) + ⁄€
≠1 (x0 ≠ x̂0) +

N≠1ÿ

i=0
⁄€

i

(„(w
i

) ≠ x
i+1) ,

(6.6)
where ⁄

i

for i = 0, . . . , N ≠ 1 denote the multipliers corresponding to the
continuity constraints in (9.28c) and ⁄≠1 denotes the multiplier of the initial
value condition (9.28b).

A popular alternative to multiple shooting is direct collocation [36], which is an
example of a direct transcription method as introduced in Section 1.2.3. We

Concatenate several integrator steps together 

and summarise as implicit discrete time system (with large vector Kn  of 
internal variables):

after Newton convergence
also compute sensitivities:
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Figure 6.2: An overview of the idea of using lifted collocation integrators, with
combined properties from multiple shooting and direct collocation.
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The Lagrangian term on each shooting interval now reads as Lc
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K in the linear system (6.11) can be defined
similarly as before where ac,i

:= Ò
z

i

Lc(Z̄, �̄, µ̄), ac,N

:= Ò
x

N

Lc(Z̄, �̄, µ̄), d
i

:=
G(w̄

i

, K̄
i

) and e
i

:= x̄
i

+ B K̄
i

≠ x̄
i+1.

6.2 Exact Lifted Collocation Integrator

Let us derive the novel lifted collocation scheme directly from the subproblem
in Eq. (6.11), as a connection between the Newton-type iterations on the direct
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Figure 6.2: An overview of the idea of using lifted collocation integrators, with
combined properties from multiple shooting and direct collocation.
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Figure 6.2: An overview of the idea of using lifted collocation integrators, with
combined properties from multiple shooting and direct collocation.
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6.2 Exact Lifted Collocation Integrator

Let us derive the novel lifted collocation scheme directly from the subproblem
in Eq. (6.11), as a connection between the Newton-type iterations on the direct

one hidden Newton iteration only,
equivalent to direct collocation… 
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Table 6.7: Detailed timing results for exact Hessian based SQP on the time
optimal OCP using nm = 5 masses or nx = 24+1 states (Ns = 3, q = 4), where
one iteration of direct collocation (6.7) based on Ipopt takes about 270 ms.

Without lifting Exact lifting IN lifting INIS lifting
(MS) (LC-EN) (LC-IN) (LC-INIS)

simulation 87.23 ms 51.33 ms 15.50 ms 15.48 ms
condensing 2.07 ms 2.08 ms 2.05 ms 2.06 ms
regularization 1.72 ms 1.82 ms 1.86 ms 1.86 ms
QP solution 5.69 ms 6.13 ms 5.67 ms 5.50 ms

total SQP step 96.77 ms 61.55 ms 25.09 ms 24.92 ms
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Figure 6.5: SQP convergence using di�erent lifting techniques for the minimum
e�ort (Gauss-Newton) and time optimal OCP (exact Hessian) with nm = 5.
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Table 6.7: Detailed timing results for exact Hessian based SQP on the time
optimal OCP using nm = 5 masses or nx = 24+1 states (Ns = 3, q = 4), where
one iteration of direct collocation (6.7) based on Ipopt takes about 270 ms.

Without lifting Exact lifting IN lifting INIS lifting
(MS) (LC-EN) (LC-IN) (LC-INIS)

simulation 87.23 ms 51.33 ms 15.50 ms 15.48 ms
condensing 2.07 ms 2.08 ms 2.05 ms 2.06 ms
regularization 1.72 ms 1.82 ms 1.86 ms 1.86 ms
QP solution 5.69 ms 6.13 ms 5.67 ms 5.50 ms

total SQP step 96.77 ms 61.55 ms 25.09 ms 24.92 ms

5 10 15 20 25 30 35 40 45 50
10

−10

10
−5

10
0

iteration number

||
W

−
W

* ||
∞

Minimum effort: Gauss−Newton based SQP

 

 Without lifting (MS)

Exact lifting (LC−EN)

IN lifting (LC−IN)

INIS lifting (LC−AF−INIS)

2 4 6 8 10 12 14 16 18 20

10
−5

10
0

iteration number

||
W

−
W

* ||
∞

Time optimal: Exact Hessian based SQP

 

 Without lifting (MS)

Exact lifting (LC−EN)

IN lifting (LC−IN)

INIS lifting (LC−INIS)
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e�ort (Gauss-Newton) and time optimal OCP (exact Hessian) with nm = 5.

SQP type iterations for an optimal control test problem

• Lifting makes iterations cheaper at same convergence speed 
• can make iterations even cheaper by Inexact Newton (IN), but with slower 

convergence
• can improve contraction rate by Inexact Newton with Iterated Sensitivities 

(INIS)
• theory highlight: INIS recovers same contraction rate as forward problem
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• Lifting makes iterations cheaper at same convergence speed 
• can make iterations even cheaper by Inexact Newton (IN), but with slower 

convergence
• can improve contraction rate by Inexact Newton with Iterated Sensitivities 

(INIS)
• theory highlight: INIS recovers same contraction rate as forward problem
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Case Study: Quadratic Programming improvements 2012-2016
(all algorithms re-activated on same computer on 22.6.2016)
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Comparison of different algorithmic QP solution approaches, 
using ACADO on Linux Laptop, CPU i7 with 3.1 GHz [A. Zanelli]

Hanging Chain Optimal Control Benchmark
• 27 states, 3 controls, state and control constraints,
• vary MPC control horizon length from N=10 to N=100 intervals
• direct multiple shooting leads to sparse NLP with N*(27+3) 

variables, N*5 state constraints, N*6 input bounds                                                         
(3000 variables, 500 state constraints, 600 input bounds for 
N=100)
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Comparison of different algorithmic QP solution approaches, 
using ACADO on Linux Laptop, CPU i7 with 3.1 GHz [A. Zanelli]

Hanging Chain Optimal Control Benchmark
• 27 states, 3 controls, state and control constraints,
• vary MPC control horizon length from N=10 to N=100 intervals
• direct multiple shooting leads to sparse NLP with N*(27+3) 

variables, N*5 state constraints, N*6 input bounds                                                         
(3000 variables, 500 state constraints, 600 input bounds for 
N=100)

• Always use: Numerical integration with code generated Implicit 
Runge Kutta (IRK-GL2) method [Quirynen 2012], two integration 
steps per interval.
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Case Study: Quadratic Programming improvements 2012-2016
(all algorithms re-activated on same computer on 22.6.2016)



Hanging Chain with Glass Wall Benchmark
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2012: ACADO Code Generation with Condensing
• efficient block sparse condensing with O(N3) complexity
• qpOASES to solve “condensed” QPs (with 3*N variables)
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2013: Code generated sparse QP solver FORCES

54

Alexander Domahidi [PhD ETH 2013]

• use interior point method with sparse linear algebra
• code generate Riccati solvers with O(N) complexity
• include FORCES as QP solver in ACADO (M. Vukov)
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• use interior point method with sparse linear algebra
• code generate Riccati solvers with O(N) complexity
• include FORCES as QP solver in ACADO (M. Vukov)



2013: Code generated sparse QP solver FORCES
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Alexander Domahidi [PhD ETH 2013]

• use interior point method with sparse linear algebra
• code generate Riccati solvers with O(N) complexity
• include FORCES as QP solver in ACADO (M. Vukov)

Auto-generated Algorithms for Nonlinear
Model Predictive Control on Long and on Short Horizons

Milan Vukov Alexander Domahidi Hans Joachim Ferreau Manfred Morari Moritz Diehl

Abstract— We present a code generation strategy for han-
dling long prediction horizons in the context of real-time nonlin-
ear model predictive control (NMPC). Existing implementations
of fast NMPC algorithms use the real-time iteration (RTI)
scheme and a condensing technique to reduce the number of
optimization variables. Condensing results in a much smaller,
but dense quadratic program (QP) to be solved at every time
step. While this approach is well suited for short horizons,
it leads to unnecessarily long execution times for problem
formulations with long horizon. This paper presents a new
implementation of auto-generated NMPC code based on a
structure exploiting auto-generated QP solver. Utilizing such
a QP solver, the condensing step can be avoided and execution
times scale linearly with the horizon length instead of cubically.
Our simulation results show that this approach significantly
decreases the execution time of NMPC with long horizons. For
a nonlinear test problem that comprises 9 states and 3 controls
on a horizon with 50 time steps, an improvement by a factor
of 2 was observed, reducing the execution time for one RTI to
below 4 milliseconds on a 3 GHz CPU.

I. INTRODUCTION

Model predictive control (MPC) has been originally de-
signed and used for control of large-scale processes, typically
in the chemical and petroleum industry. Slow dynamics
of those systems allowed large control intervals measured
in tens of seconds or even hours, leaving enough time to
compute a solution to the underlying optimization problem.
However, progress in the area of optimization algorithms
and computational hardware in the last two decades have
extended the applicability of numerical optimization on em-
bedded platforms. These developments made MPC suitable
for control of fast dynamical systems with time constants in
micro- and millisecond range.
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Nonlinear model predictive control (NMPC) allows one
to apply MPC to nonlinear dynamical systems [3]. The
continuation/GMRES method [16], the advanced step NMPC
controller [24] and the real-time iteration (RTI) scheme [6],
[7] represent efficient algorithms for fast NMPC. The reader
is referred to [8] for a more detailed overview.

Automatic code generation for convex optimization solvers
became very popular recently. The basic idea of code gen-
eration is to exploit the fact that all problem dimensions
and structure is known a priori. This allows one to gen-
erate highly customized and fast solver code, which then
solves instances of a specific problem. The code generation
framework CVXGEN [15] was the first implementation that
allowed one to export tailored interior-point (IP) solvers that
can solve quadratic programs (QPs) very fast on embedded
platforms. Following the observation that linear MPC prob-
lems fall into the class of multistage problems with particular
structure [10], FORCES has been designed to overcome
the limitations of CVXGEN in terms of problem size. The
FORCES code generation framework [9] exports primal-dual
interior point codes.

In a similar fashion, nonlinear MPC (NMPC) relevant
dimensions are also known before deployment of a controller
and highly efficient code can be generated to speed up com-
putations. To our knowledge, the existing implementations of
NMPC code generators are AutoGenU [19] and the ACADO
Code Generation tool [14]. The ACADO Code Generation
tool exports efficient self-contained C-code that implements
the RTI scheme. The algorithm implements an sequential
quadratic programming (SQP) framework and consists of
simulation and linearization of the nonlinear system, and
solution of a convex subproblem – a QP. The RTI scheme [7]
performs a single SQP iteration per sampling instant in
order to quickly deliver an approximate solution to the
optimization problem. An experimental verification of the
exported NMPC code is presented in [21], showing execution
times below 1.1 milliseconds per RTI step for a nontrivial
dynamic model.

The original implementation of the code generator for non-
linear MPC within the ACADO toolkit utilizes the embedded
version of the QP solver qpOASES [1]. The QP solver is
based on an (online) active set strategy [11] and employs
dense linear algebra routines. To obtain feedback times in
the milliseconds range, a technique called condensing [5]
is applied, which significantly reduces the number of opti-
mization variables in the QP. However, both the condensing
procedure and an active-set QP solver have cubic complexity
in number of prediction intervals, leading to prohibitively
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2013: A Surprising Improvement in Condensing
Reorder block matrix multiplications, reduce O(N3) to O(N2) complexity!
Independently discovered by G. Frison (DTU Lyngby) and J. Andersson 
(Leuven). Implemented efficiently by M. Vukov in ACADO.
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2014/15: qpDUNES and Block-Partial Condensing
• “Dual Newton Strategy” qpDUNES (Frasch et al. 2015) uses 

Lagrangian decomposition, solves many small QPs independently 
with qpOASES, and performs sparse Cholesky factorisations

• block-partial condensing (first described by Daniel Axehill) boosts 
performance of qpDUNES (Dimitris Kouzoupis) 
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2016: Efficient Register Management in HPMPC
• use interior point method with Riccati solver of O(N) complexity
• use register size specific blocking of dense matrices to reduce memory 

movements and obtain near peak CPU performance (Gianluca Frison)
• include in ACADO (M. Vukov, A. Zanelli)
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Abstract:

In this paper we present a moving horizon estimation (MHE) formulation suitable to easily
describe the quadratic programs (QPs) arising in constrained and nonlinear MHE. We propose
algorithms for factorization and solution of the underlying Karush-Kuhn-Tucker (KKT) system,
as well as the e�cient implementation techniques focusing on small-scale problems. The
proposed MHE solver is implemented using custom linear algebra routines and is compared
against implementations using BLAS libraries. Additionally, the MHE solver is interfaced to
a code generation tool for nonlinear model predictive control (NMPC) and nonlinear MHE
(NMHE). On an example problem with 33 states, 6 inputs and 15 estimation intervals execution
times below 500 microseconds are reported for the QP underlying the NMHE.

1. INTRODUCTION

Moving Horizon Estimation (MHE) has emerged as an
e↵ective option to state and parameter estimation of con-
strained or non-linear systems. It is found to give su-
perior estimation performance with respect to the Ex-
tended Kalman Filter (EKF), at the cost of increased
computational cost [11]: MHE requires the solution of an
optimization problem at each sampling instant.

MHE can be seen as an extension of the Kalman Filter,
where, beside the current measurement, a window of N
past measurements is explicitly taken into account in the
estimation. This makes the estimation less sensitive to
the choice of the arrival cost, that rarely has an analytic
expression in case of constrained or non-linear systems
[18]. Furthermore, the MHE formulation can naturally and
optimally take constraints into account.

From an algorithmic point of view, MHE is often consid-
ered the dual of Model Predictive Control (MPC), with
the di↵erence that the initial state is free. Therefore, algo-
rithms for MPC have been used to solve MHE problems.
In particular, a forward Riccati recursion (corresponding
to a covariance Kalman filter recursion) has been proposed
in [20; 14] for the solution of the unconstrained MHE sub-
problems. A QR factorization based, square-root forward
Riccati is proposed as routine in an Interior-Point Method
(IPM) for MHE in [12].

The focus of the current paper is on the computational per-
formance of algorithms and implementations, rather than
the control or estimation performance. More precisely, the
focus is on the development of a fast solver for the equality-
constrained linear MHE problem, specially tailored to
small-scale problems. This solver is embedded in an algo-
rithmic framework for non-linear MHE (presented in [15]
and implemented using automatic code generation in [6])
and used to solve in real-time the QPs arising in equality-

constrained non-linear MHE problems. The real-world test
problem in Section 5.2 falls into this class of problems.
Furthermore, the developed solver can be easily embedded
as a routine into an IPM to solve inequality-constrained
MHE problems, similarly to [9] for the MPC problem case.
In an IPM, a solver for the equality-constrained MHE
problem is used to compute the Newton direction, that is
the most computationally expensive part of the algorithm.
Hence the importance of a solver for this class of problems.

The focus on small-scale problems has important conse-
quences on algorithmic and implementation choices. In
case of small-scale dense problems (with dense meaning
MPC and MHE problems where the dynamic system
matrices are dense), solvers based on tailored recursions
are much faster than general-purpose direct sparse solvers
(see e.g. [7] for a comparison of a Riccati recursion based
solver to PARDISO and MA57 direct sparse solves in
the unconstrained MPC problem case). The performance
gap suggests that direct sparse solvers may become com-
petitive only for very sparse problems. In case of large-
scale and sparse solvers, direct sparse solvers have been
successfully applied to the MHE problem [23]. Further-
more, the focus on small-scale problems reduces the issues
related to the numerical stability of the recursion schemes.
It is well known that the Riccati recursion can be seen
as a special stage-wise factorization of the KKT matrix
of the unconstrained MPC problem. The factorization of
di↵erent permutations of the KKT matrix can have better
accuracy properties, especially in case of ill-conditioned
problems.

In this paper, we study the applicability to the MHE
problem of the e�cient implementation techniques pro-
posed in [9; 8] for the MPC problem, with special focus
on small-scale performance. In particular, one of the key
ingredients to obtain solvers giving high-performance for
small matrices is the merging of linear algebra routines

Preprints, 5th IFAC Conference on Nonlinear Model Predictive Control
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2016: Efficient Register Management in HPMPC
• use interior point method with Riccati solver of O(N) complexity
• use register size specific blocking of dense matrices to reduce memory 

movements and obtain near peak CPU performance (Gianluca Frison)
• include in ACADO (M. Vukov, A. Zanelli)
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2016: Efficient Register Management in HPMPC
• use interior point method with Riccati solver of O(N) complexity
• use register size specific blocking of dense matrices to reduce memory 

movements and obtain near peak CPU performance (Gianluca Frison)
• include in ACADO (M. Vukov, A. Zanelli)

expect further
improvement 
for block-partial
condensing (~2)
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M. Diehl    

Overview

• Embedded Optimization

• Time Optimal Motions in Mechatronics

• Real-Time Optimization Methods and Software

• Four Experimental NMPC Applications
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MPC in Practice: 2x Embedded Optimisation

66

ACTUATORS

• flight surfaces
• steering wheel
• motor speeds
• joint torques
• …

SENSORS

• GPS
• acceleration
• radar
• vision
• ...

Moving 
Horizon
Estimation:
fit model to data

Nonlinear Model
Predictive Control:
make optimal plan,
realize only first step
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1) Flight Carousel for Tethered Airplanes
Experiments within the ERC Project HIGHWIND Leuven/Freiburg
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Moving Horizon Estimation and Nonlinear 
Model Predictive Control on the Flight Carousel     
(sampling time 50 Hz, using ACADO Code Generation)
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2) Nonlinear MPC Example: time-optimal “racing” of model cars

69

Freiburg/Leuven/ETH/Siemens-PLM. 100 Hz sampling time 
using ACADO [Verschueren, De Bruyne, Zanon, Frasch, D. CDC 2014] 
(Nonlinear MPC video from 22.6.2016 in Freiburg)

Robin Verschueren
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3) Nonlinear MPC of Two-Stage Turbocharger with ACADO

Cooperation with Dr. Thiva Albin (RWTH Aachen) and Rien Quirynen
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3) Nonlinear MPC of Two-Stage Turbocharger with ACADO

Cooperation with Dr. Thiva Albin (RWTH Aachen) and Rien Quirynen
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Actuated Variables 
 

n  Wastegate- 
High Pressure 

n  Wastegate- 
Low Pressure 

 
Controlled Variable / 
Sensors 
 

n  Charging pressure 

n  No sensors in the 
exhaust gas path 

Low-Pressure 
Stage High-Pressure 

Stage 

Engine 

Charging 
Pressure 

Throttle 

test car of RWTH Aachen
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3) Nonlinear MPC of Two-Stage Turbocharger with ACADO

Cooperation with Dr. Thiva Albin (RWTH Aachen) and Rien Quirynen

• use nonlinear DAE model with 4 states, 2 controls
• use ACADO Code Generation from MATLAB
• export C-code into Simulink
• deploy on dSPACE Autobox
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3) Nonlinear MPC of Two-Stage Turbocharger with ACADO

Nonlinear MPC superior to 
Linear MPC in simulations:

73

 [driving a happy M.D. to Aachen Hbf on 2.11.2015]

Implemented in test car of RWTH Aachen 
and tested on a test drive and the road.
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4) Electrical Compressor Control at ABB (Norway)
- work of Dr. Joachim Ferreau and Dr. 
Thomas Besselmann, ABB
- nonlinear MPC with qpOASES and 
ACADO, 1ms sampling time
- first tests at 48 MW Drive
- currently, 15% of Norwegian Gas 
Exports are controlled by Nonlinear MPC 

74

Using qpOASES
to Control a 48 Megawatt Drive!

July 29, 2015 | Slide 68
© ABB Group

� Load commutated inverters (LCIs) play an important role 
in powering electrically-driven compressor stations

� MPC can help LCIs to ride through 
partial loss of grid voltage

� qpOASES solves a small-scale
QP problem every millisecond
on embedded hardware

� Successfully tested on a 48 MW 
pilot plant installation
Besselmann et al. (to appear)
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4) Electrical Compressor Control at ABB (Norway)
- work of Dr. Joachim Ferreau and Dr. 
Thomas Besselmann, ABB
- nonlinear MPC with qpOASES and 
ACADO, 1ms sampling time
- first tests at 48 MW Drive
- currently, 15% of Norwegian Gas 
Exports are controlled by Nonlinear MPC 
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Joachim Ferreau (email from 7.3.2016):

The NMPC installations in Norway 
(actually 5 compressors at two 
different sites) are doing fine since 
last autumn – roughly 80 billion NMPC 
instances solved by now. In addition, 
they have proven to work as expected 
when handling external voltage dips.



M. Diehl    

Summary

76

embedded optimization uses more CPU resources than classical 
filters, but allows the development of more powerful nonlinear control 
and estimation algorithms with wider range of validity

good numerical methods can solve nonlinear optimal control 
problems at milli- and microsecond sampling times

open source tools ACADO and CasADi well-tested in dozens of 
optimal control and embedded MPC applications: cranes, wafer 
steppers, race cars, combustion engines, electrical drives, tethered 
airplanes, power converters,…

need differentiable simulation models for numerical efficiency
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Thank you
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• “Computer Algebra System for Automatic Differentiation”
• Implements AD on sparse matrix-valued computational 

graphs
• Open-source tool (LGPL): www.casadi.org, developed           

by Joel Andersson and Joris Gillis
• Front-ends to C++, Python, Octave &                    

MATLAB
• Symbolic model import from Modelica (via 

Jmodelica.org)
• Interfaces to: SUNDIALS, CPLEX, qpOASES, IPOPT, 

KNITRO, …
• “Write efficient optimal control solver in a few lines”
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Time Optimal MPC at ETEL (CH): 25cm step, 100nm accuracy

TOMPC at 250 Hz (+PID with 12 kHz)

Lieboud‘s results after 1 week at ETEL:
 - 25 cm step in 300 ms
 - 100 nm accuracy

 equivalent to: „fly 2,5 km with MACH15,  
  stop with 1 mm position accuracy“
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