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Complex Sensor Actuator Systems

SENSORS

*GPS
eacceleration
eradar
*vision

—

How to connect ?

ACTUATORS

*flight surfaces
esteering wheel
emotor speeds

ejoint torques
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Embedded Optimization

Solve, in real-time and repeatedly, an optimization problem
that depends on the incoming stream of input data, to
generate a stream of output data.
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Embedded Optimization

Solve, in real-time and repeatedly, an optimization problem
that depends on the incoming stream of input data, to
generate a stream of output data.

Example: Parametric Quadratic Programming

= 1. i J L 3 -I‘ -
=P 11 = arg min ['1 ] [8 ;] ['l ] - [‘1 ] [z] s.t. Au+ Bx < b =

u u U L
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Embedded Optimization: a CPU-Intensive Map

EMBEDDED
OPTIMIZATION

Surprisingly powerful!
Nearly every map of interest can be generated by
embedded convex optimisation...
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The ubiquity of parametric convex optimization

THEOREM [Baes, D., Necoara, 2008]
Every continuous map

p:R™  — R
x = u=pu(x)

can be represented as parametric convex program (PCP):
u(x) =argming(u,x) st. (u,x)el
u

PCP: objective and feasible set jointly convex in parameters and
variables (x, u).



(Sketch of Proof)

Construct epigraph E of g(u, x)
1. “Bend” graph of u(x) using strictly convex g%(x)
2. Add upward rays.

3. Take convex hull.

4. Show that minima are preserved.

L
-4

&0

Given: graph of u(x)

(@)
I

= {(xpu(x), t)x € Q,8°(x) < t}
E := conv(S)
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Overview

- Embedded Optimization
- Time Optimal Motions in Mechatronics
- Real-Time Optimization Methods and Software

- Four Experimental NMPC Applications
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Time-Optimal Point-To-Point Motions [PhD Vandenbrouck 2012]

Control aims:
 reach end point as fast as possible
e do not violate constraints
* no residual vibrations

|dea: formulate as embedded optimization problem
in form of Model Predictive Control (MPC)
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Model Predictive Control (MPC)

Always look a bit into the future

Example: driver predicts and optimizes,
and therefore slows down before a
curve
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Optimal Control Problem in MPC

For given system state x, which controls u lead to the best objective value
without violation of constraints ?

simulated state trajectory  \. === ceee..

4 4 4

*
i T

1l | controls (unknowns / variables)

>

prediction horizon (length also unknown for time optimal MPC)
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Optimal Control Problem in MPC

For given system state x, which controls u lead to the best objective value
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simulated state trajectory  \. === ceee..
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Time Optimal MPC of a Crane

W_

SENSORS MPC ACTUATOR

*|ine angle * cart motor

e cart position

Hardware: xPC Target.  Software: gpOASES [Ferreau, D., Bock, 2008]
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Time Optimal MPC of a Crane

Univ. Leuven [Vandenbrouck, Swevers, D.]
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Optimal solutions varying in time (inequalities matter)

Input
: :
> 05 -
S 0t A
= st .
-1 ; ; ; ; ; ; ;
< 10 15 20 25 30 35 40
control horizon
Input rate
@'°'5|'1"T.-?"'T_"""""""
= 1 & o ]
B T T PG 7a 0/a 3 a s a0 e 0 ra e
= i i e T il
Qo o
5 10 15 20 25 30 3 40

control horizon

Solver qpOASES [PhD H.J. Ferreau, 2011], [Ferreau, Kirches, Potschka, Bock, D. , A parametric
active-set algorithm for quadratic programming, Mathematical Programming Computation, 2014]
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Overview

- Embedded Optimization
- Time Optimal Motions in Mechatronics
- Real-Time Optimization Methods and Software

- Four Experimental NMPC Applications
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Simplified Optimal Control Problem in ODE

A path constraints h(x, u) > 0

terminal
i constraint r(x(T)) > 0

0 t T

states x(t)

initial value
X0

. . . T
minimize /O Lix(t), u() dt + E(x(T))

subject to

x(0) —xo =0, (fixed initial value)
x(t)—f(x(t),u(t))=0, te][0,T], (ODE model)
h(x(t),u(t)) >0, te€][0,T], (path constraints)
r(x(T))>0 (terminal constraints)



Optimal Control Solution Methods - Family Tree

]

Hamilton-Jacobi-
Bellman Equation:
Tabulation in
State Space

Single Shooting:
Only discretized
controls in NLP

(sequential)

Indirect Methods,
Pontryagin:
Solve Boundary
Value Problem

Direct Methods:
Transform into

Nonlinear Program
(NLP)

7/

Collocation:
Discretized controls

and states in NLP
(simultaneoits)

Multiple Shooting:

Controls and node

start values in NLP
(simultaneous)
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(curse of
dimensionality)

Hamilton-Jacobi-
Bellman Equation:

Tabulation in
State Space

Optimal Control Solution Methods - Family Tree
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Optimal Control Solution Methods - Family Tree

(bad inequality %

(curse of
dimensionality)

Hamilton-Jacobi-
Bellman Equation:
Tabulation in
State Space

treatment
/ )

Single Shooting:
Only discretized
controls in NLP

(sequential)

Indirect Methods,
Pontryagin:
Solve Boundary
Value Problem

Direct Methods:
Transform into

Nonlinear Program
(NLP)

Collocation:
Discretized controls

and states in NLP
(simultaneoits)

Multiple Shooting:

Controls and node

start values in NLP
(simultaneoiis)
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(curse of
dimensionality)

Hamilton-Jacobi-
Bellman Equation:
Tabulation in
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Optimal Control Solution Methods - Family Tree
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— treatment)
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systems)

Indirect Methods,
Pontryagin:
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(curse of
dimensionality)

Hamilton-Jacobi-
Bellman Equation:
Tabulation in
State Space

Optimal Control Solution Methods - Family Tree

(bad inequality %

- treatment)

(only for stable
systems)

Single Shooting:
Only discretized
controls in NLP

(sequential)

Indirect Methods,
Pontryagin:

Solve Boundary

Value Problem

Direct Methods:
Transform into
Nonlinear Program
(NLP)

Collocation:
Discretized conrrol<
and states in NLP
(simultaneoits)

Multiple Shooting:
Controls and node
start values in NLP

Mneousl/ -
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Direct Multi ple ShOOti NE [Bock and Plitt, 1981] [Leineweber et al. 1999]

X Xi+1
uj
bemoy

b _ : .
Discretize controls e.g. piecewise constant Hans Georg Bock

u(t) =u; for t €It tir1]
» Solve relaxed DAE on each interval [t;, tir1] numerically,

starting with artificial initial values x;, z;. Obtain trajectory
pieces, and state at end of interval ¢;(x;, z;, gi, p).

N—1
minimize li(x;, zi, uj, + E (xpn,
inimi; 2; ( P) (xw, p)
subject to
Xiy1 — ¢i(xi, zi,uj,p) =0, i =0,...,N—1, (continuity)
g(xj,zi,ui,p) =0, i=0,...,N—1, (algebraic consistency)
h(x;,zi,ui,p) >0, i=0,..., N, (discretized path constr.)
r (xo0, xn, p) > 0. (boundary conditions)
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Real-Time Iterations [PhD Diehl 2001, Heidelberg]

1) Keep states in problem - use direct multiple shooting [1]

2) Exploit convexity via Generalized Gauss-Newton [2]

3) Use tangential predictors for short feedback delay (3

4) Iterate while problem changes (Real-Time lterations) 4]

5) Auto-generate custom solvers in plain-C [5,6] (no if, no malloc)

[1] Bock & Plitt, IFAC WC, 1984

[2] Bock 1983

[3] Bock, D. et al, 1999

[4] D. et al., 2002 / 2005

[5] Mattingley & Boyd, 2009

[6] Houska et al.: Automatica, 2011. Open source toolkit: ACADO CodeGen [6]
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Dynamic Optimization Problem in MPC

N —1
111%111/%11?1129 ; (i, zi,ui)  +  E(xN)
subject to 0 @ = 0,
riv1 — filxi,zi,u;)) = 0, 1=0,...,N—1
gl i, zi,u;)) = 0, 1=0,...,N—1
hi(zg, zi,u;)) < 0, i=0,...,N—1
r(rn) < 0.

Structured parametric Nonlinear Program (pNLP)
Initial Value z is often not known beforehand (“online data” in MPC)
Discrete time dynamics come from ODE simulation (“multiple shooting”)



Dynamic Optimization Problem in MPC

N—1
minimize Z Li(xi, zi,wi)  +  E(xn)
T, 2, P
subject to 0 = 0,
:zziH—f,;(a“i,zi,ui) — 0, ZZO....,N—l
gi(zi, zi,u;)) = 0, i=0,...,N—1
hi(xi, zi,u;) < 0, i=0,...,N—1
r(zy) < O.
Summarize as min _f(z)
reRn
s.t.  g(x)+ M@z 0,
x € (),

with convex f and ()



Nonlinear MPC = parametric Nonlinear Programming

Solution manifold is piecewise differentiable (kinks at active set changes)

/

Critical regions are non-polyhedral

NLP sensitivity

~

C
S

How to deal with a 2
sequence of large
parameter changes?

NLP Pathfollowing!




Real-Time lteration (Sequential Convex Programming)

Step 1: Linearize nonlinear constraints at z* to obtain convex problem:

min o f(x)
s.t.  g(z®)+ ¢ (2F)(xz — )+ ME =0,
z € (.

Step 2: Get new value of parameter £ and solve convex problem -
typically a quadratic program (QP) - to obtain next iterate. Go to step 1.

Diehl, Bock, Schloeder, Findeisen, Nagy, Aligower, JPC, 2002]
Zavala, Anitescu, SICON, 2010]
‘Tran Dinh, Savorgnan, Diehl, SIOPT, 2013]




Real-Time lteration

§

Tangential prediction even across active set changes
Can divide computations in “preparation” and “feedback phase” [D. 2001]



Real-Time lteration Contraction Estimate

Contraction estimate for primal dual errors:

2441 — 1< o 25— 4 [ - ]
+ (co + c3 [|€kr1 — Ekll) 116k — k|

Contraction depends on bounds on nonlinearity, Jacobian error, and on strong
regularity. Contraction rate independent of active set changes!

[Tran Dinh, Savorgnan, Diehl, SIOPT, 2013]



Computations in one Real-Time lteration

NLP
N-1
nlérlémbze ; Li(zi, zi,ui)  +  E(an)
subject to 0 @ = 0,
(I?,'_;_l—flj(l?.lj,zi,ui) = 0, 72=0,....N—1
gi(xi, ziyu;)) = 0, 1=0,....,N—1
hi(xi, zi,u;)) < 0, i=0,....N—1
r(zy) < 0.
Sparse QP

N—1
minimize Z Licaqp.i(zi,u;)  +  Eqp (N)
T,u P

subject to 0 = 0
Tiy1—c¢i— Aixi — Biwg, = 0, i=0,...,.N—1
hi+ Hfz;+H'vw; < 0, i=0,...,N—1

" +Rey < 0

Condensed small QP

min%nize feondqp.i(Zo, 1)

subject to P+ RI R'u < 0.

—

1) Linearize constraints:
Integration & sensitivities

2) Condense sparse QP

3) Solve condensed QP



Computations in one Real-Time lterz

NLP

N-1
minimize Z Li(xi, zi,u))  +  E(xn)
T, 2 por

subject to 0 = 0,
i1 — fi(xi, zi,u;)) = 0, i=0,...,N—1
gi(xi, ziyu;)) = 0, 1=0,....,N—1
hi(zi, zi,u;)) < 0, 1=0,...,N—1

r(zy) < 0.

Sparse QP

N—1
minimize Z Licaqp.i(zi,u;)  +  Eqp (N)
i=0

subject to X =

0
rig1— ¢ — Az — Biug = 0,
hi + Hfxi + H'u; < 0,

P +Rey < 0

Condensed small QP

mini&nize feondqp.i(Zo, 1)

subject to T+ R;” R'u <

0.

Can prepare without knowing g
“Preparation phase”

1) Linearize constraints:
Integration & sensitivities

2) Condense sparse QP

3) Solve condensed QP



Computations in one Real-Time lteration

NLP
N—1
m}j?ET%Lze ; Li(vi, zi,ui)  +  E(xN)
subject to 0 @ = 0,
vig1 — fi(vi,zioug) = 0, 1=0,....N -1,
gi(wi, ziowg) = 0, i=0,...,N—1,
hi(zi, ziu;) < 0, i=0,...,N—1
r(zn) < 0.
Sparse QP
N—1
mi%i,n&ize ZZ_; Licaqp,i(ziui)  +  Eqp (2n)
subject to 0 = 0,
Tir1— ¢ — Az, — Biu;, = 0, i=0,...,N—1,
hi+H'xi +H'u; < 0, i=0,...,N—1,
r +Rxy < 0.

Condensed small QP

minimize  feondqp.i(Zo, 1)
U

subject to T+ R;” R"uw < 0.

1) Linearize constraints:
Integration & sensitivities

2) Condense sparse QP

“Feedback phase”

3) Solve condensed QP




Alternative: skip condensing, directly solve sparse QP

NLP
N-1
m:ir:?izn,%ze ; Li(zi, zi,ui)  +  FE(xn)
subject to 0 @ = 0,
riy1 — filzi, ziyw) = 0, i=0,...,N—1,
gi(xi, ziyu;) = 0, i=0,...,N—1,
hi(zi, ziu;) < 0, i=0,...,N—1
r(zn) < 0.
Sparse QP
N—1
mi%i,n&ize ZZ_; Lieaqp.i(ziswi) +  Eqp (2n)
subject to 0 @ = 0,
Tir1— ¢ — Az, — Biu;, = 0, i=0,...,N—1,
l_zi+Hfjxi+Hf“ui < 0, 72=0,....,.N —1,
r +Rxy < 0.

1) Linearize constraints:
Integration & sensitivities

2) Solve sparse QP, e.g.
with Riccati type algorithm

Feedback phase



Past algorithmic developments [PhD students at KU Leuven]

Online active set strategy QP solver qpOASES
[Ferreau, Bock, D IJC 2007], [Ferreau, Kirches, Potschka, Bock, D.,
MathProgC 2014]. Well tested in dozens of academic and industrial

= ::7‘ applications.
Hans Joachim
Ferreau

ﬁ; - Autogeneration of plain-C nonlinear optimal control

o solvers in ACADO [Houska, Ferreau, D., Automatica 2011]
Boris Houska

- Algorithmic Differentiation and Optimal Control

Modelling Environment CasADi [Andersson, Akesson, D.,
LNCSE 2012]

Joel Andersson

[all our software is open-source and comes under industry friendly LGPL license]
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Past algorithmic developments (2)

- ACADO Code Generation consolidation, block sparse
condensing, parallelization, moving horizon estimation

.

Milan Vukov

7> = - Dual Newton active set strategy QP solver gqpDUNES for
G . long horizon optimal control [Frasch 2014], [Frasch, Sager, D. 2015]

Janick Frasch

- CasADi consolidation, sparse Hessian generation,
differentiable implicit solvers for Lyapunov equations
—

Joris Gillis 36



Recent algorithmic developments (in Freiburg)

¢ - Auto-Generated Implicit Integrators with Higher Order
Derivatives [Quirynen, Vukov, Zanon, D.,OCAM, 2014]

Rien Quirynen

- Tree-Sparsity Exploiting Optimisation Algorithms for
Nonlinear Model Predictive Control

- Convex Second Derivative Approximations for Economic
Nonlinear Model Predictive Control

- Efficient Register Management for Block Sparse Linear
Algebra Solvers, Riccati QP Solver HPMPC (PhD at DTU
Lyngby, currently postdoc in Freiburg)

- Inexact Newton type methods for microsecond Nonlinear
MPC

Andrea Zanelli 37



Recent algorithmic developments (in Freiburg)

- Auto-Generated Implicit Integrators with Higher Order

Derivatives [Quirynen, Vukov, Zanon, D.,OCAM, 2014]

- Convex Second Derivative Approximations for Economic
Nonlinear Model Predictive Control

- Efficient Register Management for Block Sparse Linear
Algebra Solvers, Riccati QP Solver HPMPC (PhD at DTU
Lyngby, currently postdoc in Freiburg)

- Inexact Newton type methods for microsecond Nonlinear
MPC

Andrea Zanelli
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Implicit Runge-Kutta / Collocation Integrators for ODE

Approximate solution of Ordinary Differential Equation (ODE)
0= f(¢,&(¢), z(t))

by an interpolation polynomial p(¢#) that satisfies derivative
matching conditions on ¢ collocation points:

39



Integration over one multiple shooting interval

Concatenate several integrator steps together

x !

and summarise as implicit discrete time system (with large vector K, of
internal variables):

Tpi1 = F(x,, Ky, u)

0 =G(xn, Kn,u),

40



Integration over one multiple shooting interval

Concatenate several integrator steps together

x|

tﬁ

‘ \
| : >

tisn t

and summarise as implicit discrete time system (with large vector X, of

internal variables):

Tpi1 = F(x,, Ky, u)

dZpnir | _

[d$n+1

0 =G(xn, Kn,u),

dzo du | o

dK,, |

[dKn

dxg du

after Newton convergence
also compute sensitivities:

IF, [dKn dKn]
OK dxg du

[Gﬁhldxn

OF,, dz,, oF,,
Ox dxg Ox du + ou ] +

_9G, ! [aGn dz,

_ 0G,, dz., +_6Gn
0K Ox dzg ou |

Ox du

41



Standard vs Lifted Collocation Integrator

Direct Multiple Shooting
with Collocation Integrator

N—-1
in Z l(xi,u;) +m(zy)

1=0
st. 0 = 5130—52'0

0 = (b(ccz,u,) — Ti+1, 1€ Zév_l
O(T;, ;) Tis Ui

and derivatives
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Standard vs Lifted Collocation Integrator

Direct Multiple Shooting
with Collocation Integrator

N-1
. l 19 Uy
in Z; (i, u;) + m(xn)

st. 0 = {Eo—i’o

0 = (b(xz,u@) — Ti+1, 1€ Zév_l
O(Zs, Us) Ty, Us
and derivatives

Direct Multiple Shooting
with Lifted Collocation Integrator

N—1
min ZO Uz, u;) + m(zy)
st. 0 = o — L%O
0 = 331'—|—BKZ'—$1'+1, iEZéV_l
AKZ,KZU) ji’ai
and derivatives
. |
! . 0G(z) "
AKZ - — % I
1 8K@ G(Z) |
| _ N —1 _
| Fow C0G(z)  0G(z) |
I ¢ 8[(2 810@ !
|

one hidden Newton iteration only,
equivalent to direct collocation...
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SQP type iterations for an optimal control test problem

__|-x-Without lifting (MS)

10" o O Exact lifting (LC-EN) | -
B\
LS
:8 \\\
3 107 - Q\\“\
= %
\Q\
%
1071° | , | | | |
3 10 15 20 25 30

iteration number

- Lifting makes iterations cheaper at same convergence speed
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SQP type iterations for an optimal control test problem

—_|-x-Without lifting (MS)

10" o -0 Exact lifting (LC—EN) -
“@D ~=~IN lifting (LC-IN)
N R
:8 N - o B
*E Q\\ =& 4 g G 8 g
I 107 F \\\® YO8 g
i d E- E- - £ - Sh
\Q\
%
10—10 | | | | |
) 10 15 20 25 30

iteration number

- Lifting makes iterations cheaper at same convergence speed

- can make iterations even cheaper by Inexact Newton (IN), but with slower
convergence
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SQP type iterations for an optimal control test problem

IW-W ||

10

10

10

-x-Without liting (MS)

& -©-Exact lifting (LC-EN) m
]\\\@D : ~=~IN lifting (LC-IN)
N =
N H-H.g-m e -+-INIS lifting (LC—AF-INIS)
o e R
) N L 1+ +1
- Yo K TP teag
YO S goa
\Q \+\
\\\\\ \AF\
Q N
-10 | >t | | | |
5 10 15 20 25 30

iteration number

- Lifting makes iterations cheaper at same convergence speed

- can make iterations even cheaper by Inexact Newton (IN), but with slower
convergence

- can improve contraction rate by Inexact Newton with lterated Sensitivities
(INIS)

46



SQP type iterations for an optimal control test problem

IW-W ||

10

10

10

-x-Without lifting (MS)

IS

-10

-©- Exact lifting (LC-EN) N
IN lifting (LC—IN)
-+-INIS lifting (LC—AF-INIS)

s | | |

|
25
iteration number

15 20 30

- Lifting makes iterations cheaper at same convergence speed

- can make iterations even cheaper by Inexact Newton (IN), but with slower

convergence

- can improve contraction rate by Inexact Newton with lterated Sensitivities

(INIS)
- theory highlight: INIS recovers same contraction rate as forward problem!
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CPU Time Comparison per SQP lteration

Rien Quirynen

Detailed timing results for exact Hessian based SQP on the time
optimal OCP using n,, = 5 masses or n, = 24+1 states (Ng = 3,q = 4), where
one iteration of direct collocation (6.7) based on Ipopt takes about 270 ms.

Without lifting  Exact lifting IN lifting INIS lifting

(MS) (LC-EN) (LC-IN) (LC-INIS)
simulation 87.23 ms 51.33 ms 15.50 ms 15.48 ms
condensing 2.07 ms 2.08 ms 2.05 ms 2.06 ms
regularization 1.72 ms 1.82 ms 1.86 ms 1.86 ms
QP solution 5.69 ms 6.13 ms 5.67 ms 5.50 ms
total SQP step 96.77 ms 61.55 ms 25.09 ms 24.92 ms




Case Study: Quadratic Programming improvements 2012-2016
(all algorithms re-activated on same computer on 22.6.2016)

Andrea ZneIIi
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Case Study: Quadratic Programming improvements 2012-2016
(all algorithms re-activated on same computer on 22.6.2016)

Comparison of different algorithmic QP solution approaches,
using ACADO on Linux Laptop, CPU i7 with 3.1 GHz [A. Zanelli]

Andrea Zanell Hanging Chain Optimal Control Benchmark
- 27 states, 3 controls, state and control constraints,
- vary MPC control horizon length from N=10 to N=100 intervals

- direct multiple shooting leads to sparse NLP with N*(27+3)
variables, N*5 state constraints, N*6 input bounds
(3000 variables, 500 state constraints, 600 input bounds for
N=100)
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Case Study: Quadratic Programming improvements 2012-2016
(all algorithms re-activated on same computer on 22.6.2016)

Comparison of different algorithmic QP solution approaches,
using ACADO on Linux Laptop, CPU i7 with 3.1 GHz [A. Zanelli]

Andrea Zanelli Hanging Chain Optimal Control Benchmark
- 27 states, 3 controls, state and control constraints,
- vary MPC control horizon length from N=10 to N=100 intervals
- direct multiple shooting leads to sparse NLP with N*(27+3)
variables, N*5 state constraints, N*6 input bounds

(3000 variables, 500 state constraints, 600 input bounds for
N=100)

- Always use: Numerical integration with code generated Implicit
Runge Kutta (IRK-GL2) method [Quirynen 2012], two integration
steps per interval.

Rien Quirynen
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Hanging Chain with Glass Wall Benchmark

0 -
E
N T2
il
1
0.5
X [m]
1
— o~ m
5 0 5 0 5 0
1 -1 fi
1 0 1 -1 0 1 1
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2012: ACADO Code Generation with Condensing

- efficient block sparse condensing with O(N3) complexity
- gpOASES to solve “condensed” QPs (with 3*N variables)

200

s QPOASES CN3

150 -

100

‘0
€
v
=
=
=
o
@

50

0 20 40 60 80 100
prediction horizon N

Milan Vukov
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2013: Code generated sparse QP solver FORCES

- use interior point method with sparse linear algebra
- code generate Riccati solvers with O(N) complexity
- include FORCES as QP solver in ACADO (M. Vukov)

Alexander Domahidi [PhD ETH 2013]
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2013: Code generated sparse QP solver FORCES

- use interior point method with sparse linear algebra
- code generate Riccati solvers with O(N) complexity
- include FORCES as QP solver in ACADO (M. Vukov)

200 l
— QPOASES CN3
s FORCES PRO ‘
150 | ~ 4
0
£
)]
g 100
s
(ol
@)
50 -
O | | | 1
0 20 40 60 80 100

prediction horizon N

Alexander Domahidi [PhD ETH 2013]
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2013: Code generated sparse QP solver FORCES

use interior point method with sparse linear algebra
code generate Riccati solvers with O(N) complexity
include FORCES as QP solver in ACADO (M. Vukov)

200 I 1 . .
— QPOASES CN3
s FORCES PRO
150
‘«n
&
v
& 100 -
=
=
o
O
50 |- December 1043, 2013, Forence, taly
w
Auto-generated Algorithms for Nonlinear
0 / Model Predictive Control on Long and on Short Horizons
0 20

Milan Vukov Alexander Domahidi Hans Joachim Ferreau Manfred Morari Moritz Diehl

Alexander Domahidi [PhD ETH 2013]



2013: A Surprising Improvement in Condensing

Reorder block matrix multiplications, reduce O(N3) to O(N2) complexity!

Independently discovered by G. Frison (DTU Lyngby) and J. Andersson
(Leuven). Implemented efficiently by M. Vukov in ACADO.

, @

Milan Vukov

Gianluca Frison Joel Anderssol
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2014/15: qpDUNES and Block-Partial Condensing

- “Dual Newton Strategy” gpDUNES (Frasch et al. 2015) uses
=~ Lagrangian decomposition, solves many small QPs independently
). . with gpOASES, and performs sparse Cholesky factorisations
- block-partial condensing (first described by Daniel Axehill) boosts
performance of qpDUNES (Dimitris Kouzoupis)

8t 3

Janick Frasch

Dimitris
Kouzoupis
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2014/15: qpDUNES and Block-Partial Condensing

- “Dual Newton Strategy” gpDUNES (Frasch et al. 2015) uses
Lagrangian decomposition, solves many small QPs independently

e
Sl . ) with gpOASES, and performs sparse Cholesky factorisations
Janick F n - block-partial condensing (first described by Daniel Axehill) boosts
anick rasc performance of qpDUNES (Dimitris Kouzoupis)
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2016: Efficient Register Management in HPMPC

- use interior point method with Riccati solver of O(N) complexity

* use register size specific blocking of dense matrices to reduce memory
movements and obtain near peak CPU performance (Gianluca Frison)

- include in ACADO (M. Vukov, A. Zanelli)

Gianluca Frison
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2016: Efficient Register Management in HPMPC

use interior point method with Riccati solver of O(N) complexity

use register size specific blocking of dense matrices to reduce memory
movements and obtain near peak CPU performance (Gianluca Frison)

include in ACADO (M. Vukov, A. Zanelli)

Gianluca Frison

Preprints, 5th IFAC Conference on Nonlinear Model Predictive Control
September 17-20, 2015. Seville, Spain

High-Performance Small-Scale Solvers for
Moving Horizon Estimation

Gianluca Frison * Milan Vukov ** Niels Kjglstad Poulsen *
Moritz Diehl ***** John Bagterp Jdrgensen *
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2016: Efficient Register Management in HPMPC

- use interior point method with Riccati solver of O(N) complexity
* use register size specific blocking of dense matrices to reduce memory
movements and obtain near peak CPU performance (Gianluca Frison)

- include in ACADO (M. Vukov, A. Zanelli)
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2016: Efficient Register Management in HPMPC

- use interior point method with Riccati solver of O(N) complexity
* use register size specific blocking of dense matrices to reduce memory
movements and obtain near peak CPU performance (Gianluca Frison)

- include in ACADO (M. Vukov, A. Zanelli)
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Overview

- Embedded Optimization
-+ Time Optimal Motions in Mechatronics
- Real-Time Optimization Methods and Software

- Four Experimental NMPC Applications

M. Diehl 65



MPC in Practice: 2x Embedded Optimisation

SENSORS

GPS
acceleration
radar

- Vvision

Moving
Horizon
Estimation:

fit model to data

v

Nonlinear Model §
Predictive Control:{

[

make optimal plan, =

realize only first step

...........

ACTUATORS

flight surfaces

steering wheel

motor speeds
- Joint torques
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1) Flight Carousel for Tethered Airplanes

Experiments within the ERC Project HIGHWIND Leuven/Freiburg

M. Diehl 67



Moving Horizon Estimation and Nonlinear

& Model Predictive Control on the Flight Carousel
Milan Vukov  (8ampling time 50 Hz, using ACADO Code Generation)

Closed loop experiments
with NMPC & NMHE

HIGHWIND

UNI

FREIBURG
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2) Nonlinear MPC Example: time-optimal “racing” of model cars

Freiburg/Leuven/ETH/Siemens-PLM. 100 Hz sampling time
using ACADO [Verschueren, De Bruyne, Zanon, Frasch, D. CDC 2014]
(Nonlinear MPC video from 22.6.2016 in Freiburg)




3) Nonlinear MPC of Two-Stage Turbocharger with ACADO

Cooperation with Dr. Thiva Albin (RWTH Aachen) and Rien Quirynen

M. Diehl 70



3) Nonlinear MPC of Two-Stage Turbocharger with ACADO

Cooperation with Dr. Thiva Albin (RWTH Aachen) and Rien Quirynen

'

Low-Pressure Actuated Variables
High-Pressure Stage
- Stage \ B \Wastegate-

- \ _| High Pressure

Throttie 8 B \Wastegate-

Engine

\ — Low Pressure

Controlled Variable /
S\ Sensors

B Charging pressure

Charging .
Pressure ®  No sensors in the

exhaust gas path
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3) Nonlinear MPC of Two-Stage Turbocharger with ACADO

Cooperation with Dr. Thiva Albin (RWTH Aachen) and Rien Quirynen

- use nonlinear DAE model with 4 states, 2 controls
- use ACADO Code Generation from MATLAB

- export C-code into Simulink

- deploy on dSPACE Autobox

d (1
E (§Jtc,hpn125c,hp> = Pt,hp - Pc,hp

d (1
dt ( Jt lpnf lp) Pt lp_Pc,lp

7 1)

Pe,hp = M, hpCpLuc hp

- (1.5, - 1)

Pc,l —m lpcp amb

Py hp = My hpcp ut,hpTls,t,hp (1 t hp)

Ptlp—mtlpcp ut,lpTls,t,lp 1- tlp)
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3) Nonlinear MPC of Two-Stage Turbocharger with ACADO

Nonlinear MPC superior to
Linear MPC in simulations:

— LTIMPC -

— LTVMPC
— NMPC

- - Setpoint -

Implemented in test car of RWTH Aachen
and tested on a test drive and the road.

[driving a happy M.D. to Aachen Hbf on 2.11.2015]
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4) Electrical Compressor Control at ABB (Norway)

- work of Dr. Joachim Ferreau and Dr.
Thomas Besselmann, ABB

- nonlinear MPC with gpOASES and
ACADOQO, 1ms sampling time

- first tests at 48 MW Drive

- currently, 15% of Norwegian Gas
Exports are controlled by Nonlinear MPC

M. Diehl 74



4) Electrical Compressor Control at ABB (Norway)

- work of Dr. Joachim Ferreau and Dr.
Thomas Besselmann, ABB

- nonlinear MPC with gpOASES and
ACADOQO, 1ms sampling time

- first tests at 48 MW Drive

- currently, 15% of Norwegian Gas
Exports are controlled by Nonlinear MPC

Joachim Ferreau (email from 7.3.2016):

The NMPC installations in Norway
(actually 5 compressors at two
different sites) are doing fine since
last autumn — roughly 80 billion NMPC
instances solved by now. In addition,
they have proven to work as expected
when handling external voltage dips.
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Summary

embedded optimization uses more CPU resources than classical
filters, but allows the development of more powerful nonlinear control
and estimation algorithms with wider range of validity

good numerical methods can solve nonlinear optimal control
problems at milli- and microsecond sampling times

open source tools ACADO and CasADi well-tested in dozens of
optimal control and embedded MPC applications: cranes, wafer
steppers, race cars, combustion engines, electrical drives, tethered
airplanes, power converters,...

need differentiable simulation models for numerical efficiency
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Thank you
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CasADi

“Computer Algebra System for Automatic Differentiation”

Implements AD on sparse matrix-valued computational
graphs

Open-source tool (LGPL): www.casadi.org, developed
by Joel Andersson and Joris Gillis e g

Front-ends to C++, Python, Octave &
MATLAB o~ ’

Symbolic model import from Modelica (via
Jmodelica.org)

Interfaces to: SUNDIALS, CPLEX, gpOASES, IPOPT,
KNITRO, ...

“Write efficient optimal control solver in a few lines”




Time Optimal MPC at ETEL (CH): 25cm step, 100nm accuracy

[\)
o
I

|

Position [mm]
—_
o
{
|

o
l

TOMPC at 250 Hz (+PID with 12 kHz)

Lieboud's results after 1 week at ETEL.:
- 25 cm step in 300 ms
- 100 nm accuracy

Logarithmic error [m)]

equivalent to: ,fly 2,5 km with MACH15,
stop with 1 mm position accuracy*
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